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Abstract

This paper describes a Monte Carlo sampling plan for estimating how a function
varies in response to changes in its arguments. Most notably, the plan effects this
sensitivity analysis by applying the acceptance-rejection technique to data sampled at only
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measures in reliability analysis.

The paper derives the variances of the proposed estimators and suows how w6 use
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arguments, at which to sample, that minimize the worst case bounds. Individual and
simultaneous confidence intervals are derived and an example based on s-t reliability
illustrates the method. The paper also compares the proposed method and an alternative

Monte Carlo approach that uses an importance function.
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Abstract
-

This paper describes a Monte Carlo sampling plan for estimating how a function
varies in response to changes in its arguments. Most notably, the plan effects this
sensitivity analysis by applying the acceptance-rejection technique to data sampled at only
one specified setting for the arguments, thus saving considerable computing time when
compared to alternative methods. The plan which applies for a 0-1 response on each
replication has immediate application when estimating variation in system performance
measures in reliability analysis.

The paper derives the variances of the proposed estimators and shows how to use
worst case bounds on these or on corresponding coefficients of variation to choose the
arguments, at which to sample, that minimize the worst case bounds. Individual and
simultaneous confidence intervals are derived and an example based on s-t reliability

illustrates the method. The paper also compares the proposed method and an alternative

-
-

Monte Carlo approach that uses an importance function. \ “ . -

Key Words:  acceptance-rejection sampling, Monte Carlo method sensitivity analysis,

importance function, reliability
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Many Monte Carlo sampling experiments aim at estimating quantities of the form

99 =3 ¢(1P(z9 (1)

€ %

where {¢(z)} is a 0-1 binary function, {P(zg), z€.3} is a probability mass function
(p.m.f.) with given parameter vector ¢, and domain of support ¥ so large as to make
exact evaluation via (1) intractable. Occasionally, the objective is to estimate the function
{o(q), g2} where 2= {ql,...,qw}. Problems of this type arise in reliability theory where
g(q) represents system reliability and q = (qjl""’qu) denotes the reliabilities of
components of types 1 through r which compose the system in the jth of w component
reliabilitvy vectors of interest. Analysis of g(ql),...,g( qw) enables one to assess the benefits
of the alternative reliahilities vectors g,---»q, on system reliability.

Although one can simply run w experiments, sampling from {P(z,ql)},...,{P(z,qw)}
to produce estimates of g(ql),...,g( qw), respectively, a more efficient method samples from
{P(z,p)} on a single experiment and uses these data together with the Monte Carlo
importance function technique or the acceptance-rejection technique to produce the desired
estimates. These approaches are not new, the importance function technique being implicit
in Kahn (1950) and Kahn and Harris (1949) and the acceptance-rejection technique being
implicit in von Neumann (1949). Beckman and McKay (1987) have more recently
discussed both methods. However, until recently little was known about how the binary
property of {¢(z)} affected the sampling properties of these techniques for estimating (1).
Fishman (1987) provides a comprehensive account of these properties for the importance
function approach. The present paper focuses on the acceptance-rejection method and
provides a comprehensive description of the sampling properties of the resulting estimators

that exploit the binary property of {é(2)} and the wuse of a modified

N
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pm.f {Qzp)}, based on {P(zp)} and information on bounds for {¢4(z)} and
{9(q), g€ 2}, to sample the data. This last modification allows the acceptance-rejectivn
method to work with considerably improved efficiency. Although the paper focuses on
applying the proposed technique to reliability estimation, we emphasize that the
methodology applies to the considerably wider class of problems with binary {¢(z)}.
Section 1 gives basic definitions and Section 2 describes estimation at a single point.
Section 3 then describes how to perform function estimation using the acceptance-rejection
method. Section 4 shows how to choose the design parameter p to minimize either the
worst-case variance or the coefficient of variation of the resulting function estimator,
thereby dramatically increasing the efficiency of the proposed Monte Carlo procedure.
Sections 5 and 6 show that even in the worst case, the proposed technique is at least as
good as crude Monte Carlo sampling. Sections 7 and 8 derive individual and simultaneous
confidence intervals. Section 9 illustrates the proposed technique with an example and
Section 10 compares the characteristics of the acceptance-rejection method with those of

the importance function method.

1. Problem Setting
Consider a network G = (¥%;8) with node set 7 and edge set & Assume that

nodes function perfectly and that edges fail randomly and independently. Let

r = number of distinct types of edges
.= probability that an edge of type ¢ functions i =1,...,r
7= (gy5--q)
k, = number of edges of type i
k= (k,..k)
€, = jthedgeof typei j=1,..k; i=1,.,r
z..=1 ifedge e..functions
)] )

=0 otherwise




1

TN ES

z, = z;= number of functioning edges of type ¢

J

z=(z T

rk)

TR AR RN AT
1 r

= set of all edge states z

r k. r z. k-z.
P(z,q) = P(zkg) = I M'lz g+(1-2)(1-¢)] =T ¢/(1-¢) " (2)
=1 j=1 =1

= p.m.f. of state z€F
#(z) =1 if the system functions when in state z

=0 otherwise

o9 = I ¢z Pzq ()
z€ %
= probability that the system functions.

We also assume that G describes a coherent system. A system of components is coherent
if its structure function {@#(z)} is nondecreasing in each argument and each component is
relevant (Barlow and Proschan 1981, p. 6).

Let 2 denote a set of w component reliability vectors of interest. Then the

purpose of analysis is to estimate the s-t reliability function {¢(q), ¢€2}.

2. Estimation at a Point

Crude Monte Carlo sampling offers a baseline against which potentially more
efficient sampling plans can be compared. Let X 1),...,X(K) denote K independent samples
drawn from {P(z,q), z€.3}. Then

K )
9,00 = % .-§1¢(X(')) (4)

is an unbiased estimator of ¢(q) with
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var g,.(¢) = 9(@[1-9(gl/ K. (5)

To compute }}K(q), one performs K trials sampling X from {P(zkgq)} and evaluates

#(X) on each trial. The corresponding mean total computation time has the form

T(3,(0) = @, + Klo+a,| 8] +ay(5 g)]

where
o(Z Q=% Pzg (2
x 3
and

((z) = expected time to evaluate ¢(z).

The quantities a, @, a, and as(z ¢) are machine dependent.

We now show how to modify the sampling plan to improve statistical efficiency
using information on bounds as described in Fishman (1986). Suppose that there exist 0-1

binary functions {¢,(2), z€3 and {¢U(z), z€.3} such that
¢,(2) < ¢(z) < 6,(2) Vzed
Then ¢(q) has lower and upper bounds gL( q) and gU(q), respectively, where

9(@) = I ¢(2) P(z,q) i€{L,U}.
e ¥

Suppose that one now samples X(l),...,X“") independently from the modified p.m.f.




F(z,q) IEX

where

Then

is also an unbiased estimator of ¢(g), but with variance

var g, (@) = [9,(9-A DA D-9,(D)/ K < A¥(g)/4K.

Compared to crude Monte Carlo sampling, one has

var g,.(g) ,

var g,.(q)

> 1,

indicating that g K( ) always has a variance no larger that var g 9

D(q) = 1/[{gL(q)[l—gU(q)]}%-{.fl,,(fl)[l‘gL(")]}%]2

(6)

(8)

(9)

To compute gK( ¢g) using precomputed bounds, one performs A trials sampling X

from {Q(z¢)} and evaluates ¢(X) on each trial Here mean total time assumes the form
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T(9,40) = B, + KIB,+B,| 8| +ay( %, ,p)/ A(g)]

where

& = {zeZ: ¢L(z)=0 and ¢U(z)=l}

and ,ﬂl and ,62 denote machine dependent constants.

Observe that

K(g) = K var g (q)/var g,(q)

denotes the number of observations one would have to take with crude Monte Carlo to
achieve the same variance that arises in K observations using {(X(z,p)}. Then A (g) =

gl‘( N( q)/ T( gK(q measures the efficiency of &K(q) relative to §K(q) and for large K

and | &| has the approximate form

a,*+a,(5q) /| 8 99 {1-9(g)]
Alg=

[ﬂm (%, 9/2(0) 18] l9,(0)-9(0)][o(9)-g,(2)]

){ a+a(uz:q)/|alJ )
" Byra, (£, 0)/0(q)] 8]

where (9) defines D{(q) > 1. A ratio greater than unity favors the alternative sampling
plan. Experience (Fishman 1986) has shown this to be the case for moderate and high

component reliabilities for s-t reliability.
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3. Function Estimation Based on the Acceptance-Rejection Method

To estimate ¢(g) for each component reliability vector ¢€ 2= {ql,...,qw}, one
can perform 1w separate experiments, sampling from {Q(z,q’.)} in (6) on the ith
experiment for ¢ = 1,..,w. This procedure incurs the cost of running w individual
sampling experiments. However, one can actually avoid this cost by performing a single
experiment, sampling data from {Q(zp)} and then using these same data to estimate
g(ql),...,g(qw). We later show that if the component reliability vector p at which
sampling occurs belongs to 2, the proposed approach leads to estimates of specified
accuracy at a cost no larger than that incurred by performing all w individual experiments
to achieve the identical accuracies.

Consider the p.m.f.
f(z) = ab(2) (2) € % (11)
where

o2)20, £ ¢(z)=1, 0<¥2)<1 and a=1/ X b(z) c(2).
I€F €%

Suppose one samples X from the p.m.f. {¢(z)} and Z from #(0,1). If Z< b(X), then
X has the p.m.f. {f{z)} in (11). This acceptance-rejection method of sampling is due to

von Neumann (1949). For the current problem,
«(z) = Qzp)

b(2) = R(z,6,0)/R (4,5, (12)

where
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R(z,¢,p) = P(z,9)/P(z.p)

T. k-r.

1 (q/p)" [-0)/-p)] * (13)
1

and

E (¢p) = maxR(zgp) s.t. ¢,(9)=0 and ¢ (5)=1.
T€Z

The quantity

a= A(p) R (kg,p)/A(g) (14)

denotes the mean number of trials required until one successfully obtains an X from

{QAz9}

A small modification increases the efficiency of this procedure. Let

RO( ¢,p) = maxR(z,qp) s.t. #(z)=0 and ¢”(z)=1 (15a)
T€EZ
R (¢p) = maxR(z,qp) s.t. ¢,(2)=0 and ¢(z)=1 (15b)
ze%
and
F(z,i,9p) = R(z,¢p)/ R (¢.p) 1=01. (16)

Suppose one samples X from {Q(z,p)}, samples Z from %(0,1) and determines ¢(X).
If Z< F(X,¢(X),qp), then X has the p.m.f. {Q(z,q)} with mean number of trials until




success

-« 9(p)-9,(p)
a= %)ﬁ Ry(qp) + —p&%—p— R (g,p)

< A(p) R (4,9)/A(g),

*
since max [g,(p) - ¢(p), 9(p) - 9,(p)] < A(p) and max (R (¢p), R,(¢p)] < R (¢,p). The
computations of Ro(q,p) and Rl(q,p) depend on the choice of bounding functions

{¢,(9)} and {¢(z)} and are discussed in the example in Section 9.
We next describe the statistical properties of data generated by the

acceptance-rejection method.

Theorem 1. Let X and Z denote samples drawn from {Q(z,p)} in (6) and %/(0,1)
respectively. Define R, = Ro(q,p), R, = Rl(q,p),

v (zmgp) =1 if 0<u< R(54p)/R, i=0,1 (17)

Hy(%ap) = 9,0 - A(P)R([1-¢(2)] 0, (%1,0,P) (18a)
and

w(5uap) = g,(0) + A(P)R §(2)¢ , ,(2,5.:D)- (18b)
Then
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i E{l-¢(X]e, x(X:Z,e2)} = [9,(0) - A9]/A(PR,
i E[(X)ey (X2 en)] = (49 - 9,(2]/A(PR,
i, Ep(X,Z,¢p) = o(q i=0,
iv.  var u(X,2,0.) = (9,9 - 99lls(9) - 9,9 + A(PR,]
=g + 9,40 - (DA(PR - A(g)]
v.  var p (X,Z,¢p) = (90 - 9,(@I[APR, + 9,(0) - 9()]
=g + [« - 9,(DA(PR,- A(9)]
vi.  covluy(X.Z,qp), u)(X,2,¢.)] = n9) = [g9,(0)-9(2)[9(9)-9,(9)].

Proof. Straightforwardly,

E{[1-0(X)]l9y x)(X:Z,:0:0)} = pr(¢(X) = 0, 9(X,Z,q,p) = 1]

_ R(z,q,p) [¢,( 2)-¢,(3)
= z?j[““b(’)] R¢(‘) ] —Alp) P(I,P)

=949 - (9l/A(D)R,

establishing i. Part ii follows in analogous fashion and the proofs of parts iii through vi

are then immediately obvious.




Suppose one performs K independent replications generating X 1),...,X( B) from (6)
and Z(l),...,Z(K) from #%(0,1). Then

- K
9,489 =% z u(XD,29,g.p) i=0, (19)
J:

have expectations ¢(¢q) with var biK(q,p) = var u,.(X,Z,q,p)/K. Observe that the
inequalities var uO(X,Z,q,p) > 1(¢q) and var pl(X,Z,q,p)] > (g for ¢# p, when they
occur, signal an inflation of variances over what obtains if one were to sample from
{QAz,q)} directly. Therefore, it is of interest to assess how much these variances and
corresponding coefficients of variation grow when using the proposed acceptance-rejection

method. Theorems 2 and 3 provide worst case upper bounds.

Theorem 2. Let X and Z denote samples from {Q(z,p)} in (6) and %(0,1)

respectively. Then

[A(PR ]?/4 if A(q) > A(p)R,/2
var u(X,Z,¢.p) < M(¢p) = (20)
A(9[A(PR,-A(g)] if Alg < A(P)R,/2

i=0,Ll.

Proof. Since g,(¢) < o(@ < 9,9, A = [9,{0) - oPllod - g,{9) + A(PR)] has its
maximum at ¢ () = g,(g) + max[0,A(q) - A(p)R, /2], from which (20) follows for i = 0.

Similarly, B = [¢(q) - g,(Q)[A(PR, + g,(9) - «)] has its maximum at g (¢) = g,{q) -
max[0,A(q) - A(p)R, /2], from which (20) follows for i= 1.
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Observe that evaluation of (20) for ¢ = 0,1, prior to sampling, enables one to

determine which estimator has the smallest worst case variance.

Theorem 3. Let

1(ep) = [var (X, Z.gp)]*/[1-o(g)] i=0,1
Then
2 N _ _ 2/4(1-0 o)+ -
gL(q)ge;-?q)SgUmvo(q,p) = Ny(¢p) = [A(p)R)"/4(1-9 {@+A(p) R ][1-9 (9] (21a)
if A(p)Ry)[1-9,(9)-A(g)] < 2A(g)[1-9,(9)]
= A(QIA(P)R)-A(9)/11~g,(@]*  otherwise (21b)
and
2(¢p) = N,(ap) = [A(P)R,1*/4[1-¢,(9)-A(p)R.][1- 22
gL(.,)'é'?’(‘,)ggu(,{’*(”) (ap) = [A(P)R,)"/4(1-9,(9)-A(P)R,][1-9,(q)] (22a)

if A(p)R ][1-9,(9+A(q)] < 2A(g)(1-9,(9)]
= AQIAPR-A(9)/[1-9,(0)°  otherwise. (22b)

Proof. We give the proof for max 702(q,p). Let

A = var p(X,Z,49)/[1-9(9)" (23)
Then
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o4 ~99{21-9,(9l+A(p)Ry}+29,(9)[1-9,(2)]-A(p) R [1-29 ()]
9" [1-9(q)}? |

Since 9A/0¢(q) <0 and 0A/0¢(q) =0 at
90 = 9,{9

9 (9 = {20,(01-9,(9)] - A(D)R [1-29 (9]}/{21-g {D}+A(P)R ]},

A has its maximum at g*(q) if g*(q) > gL(q), which upon substitution of g‘(q) for g(¢g) in
(23) gives (21a). If g*(q) < gL(q) then the maximum occurs at gL(q), giving (21b). A

completely analogous result holds for max 712( qp).

4. Choosing the Sampling Probabilities p
The results in Theorems 2 and 3 play a critical role in deciding at which component
reliability vector p one should conduct the Monte Carlo sampling experiment. For each

1= 0,1, one procedure finds the p€2 that minimizes max M(gp) where (20) defines
ged
M‘.( ¢,p) as the worst case var ui(X,Z,q,p). Then one uses

p=7p, if max M (¢.p,) < max M,(q,p,)
gel ge2
(24)
=P otherwise,

so that sampling from {Q(z,p)} with p as in (24) minimizes the worst case variance that

can arise. Finding P, takes w’ evaluations of M‘.(q,p). Also, note that

K, = [min[max M (q,p,), max M (¢p,)]/v]
qel qc2
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gives the worst case sample size required to obtain estimates of g(ql),...,g(qw) with
variances no greater than a specified v,. This valuable information can assist a user of the

Monte Carlo method before any sampling begins.

The proposed technique can also accommodate a relative accuracy specification.

For i= 0,1, an alternative procedure finds the p',e.Z that minimizes max N'.(q,p) where

ge2
(21) and (22) define No(q,p) and Nl(q,p), and then uses
P=0p if max N (¢.p,) < max N, (¢p,)
0 Py 0 0 qc 2 1 1
=p, otherwise.

Sampling from {Q(z,p)} with this p minimizes the worst case coefficient of variance. Also,

. 2

K,, = [min[max N (qp,), max N,(qp,)}/u] (25)
ge 2 qgel

provides the worst case sample size needed to estimate g(ql),...,g( qw) with coefficients of

variation no greater than a specified u,.

5. Efficiency

Naturally, the appeal of any proposed sampling plan depends on the cost saving it
offers, when achieving a specified accuracy as compared to other more conventional
methods. These cost considerations have two components, one based on variances and the
other based on computer times expended per replication. Theorem 4 derives an expression
for the smallest variance ratio that one can expect to achieve when comparing a crude
Monte Carlo estimate ¢ K( g) to an estimate E}i 1(( ¢,p) based on the proposed method. This
smallest ratio is analogous to D{(¢q) in (9) and reveals the least favorable circumstance that

one can expect to encounter. The ratio can be computed prior to sampling, thereby
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providing a lower bound on what to expect.

Theorem 4. Let Y denote a sample from {P(z,p)}, X a sample drawn from {Q(z,p)}
and Z asample drawn from %(0,1). Let

B, (4(q),p) = var ¢(Y)/var p(X,Z,q,p) i=0,1

Then

min  Bi(g(9)p) = 1/{g,{0[1-9,{Q+AD R} -{11-9 (9lls {D-AD) B )} )

9;(0<9(9<gL9) 0

(26)

Alg){g, (@) [1-9,(0)]+9 (@(1-g,(9)]}

if A(p)R, <
Py A*(g)+g,{0)[1-g,(0)]

= 9,(9(1-9,(Q)/A(@[A(PR)-A(g)]  otherwise

and

min B («(a)p) = 1/{{g,(d1-9,(9-A@)R,)}-{[1-9,(dllg,(9+A(P)R]}}}?
9.(0<9(9<g, ()

(27)

A(g){g9,(D(1-9,(D]+g,(D[1-9, (]}

it A(p)R, <
O T g (0 1-0,(0)]

= 9 9[1-9,(a)]/A(9[A(P)R-A(g)] otherwise.
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Proof. We prove the result for Bl(g( g¢),p). Observe that 331 /39(q) = 0 has roots

1 - -A
ro= 1/{1+(_1):{1 gL(q) {1 9L('I) (p) Rl ]

9,9 ’ 9, (+2(p)E } 1=1,2. (28)

If A(p)R, <1 - gL(q), the roots are real with either r, <0Oorr, 2 1 and gL(q) ¢y ¢l

Since 9B, /Bg(q)’ < 0, then
9(9) = 9,(0)

min B.(g(9),p) = B,(r.,p) if r,<9,{0
9, (0<9( D0 e 2495

= B,(9,(9)p) if 2 9,(q).

Expression (27) follows from substituting (28) for r, in the inequality. If A( p)RI >1-
g,(q), then the roots are complex and 9B, /d¢(q) < 0 for all ¢(g) € [9,(9), gU(q)] so that the
minimum occurs at g(g) = gU( q). Moreover, complex roots imply that the condition in the

upper branch of (27) is always true, thus completing the proof. An analogous result holds
for Bo(g( Q),p)- n

The availability of (26) and (27) for each ¢ in 2 again provides valuable
information to the Monte Carlo user prior to experimentation. In particular, it identifies
at which ¢ adverse variance ratios may occur. However, measuring the statistical
efficiency of {;01(('1’?)’ g€ 4} and {;;”‘,(q,p), g €4} as estimators of {¢(g), g€} calls for a
more elaborate analysis than that for estimation at a single point. In particular, the
sobering observation that R, and R, in (26) and (27) increases exponentially with | &l
makes one circumspect about the benefit of the proposed method as the size of G grows.

We now show that this benefit is assured for finite w = | 4| and number of edge types r,

R




provided that pe 2.
Recall that 2= {ql,...,qw} where g, = (qu,...,qn.) and g;; 1s the reliability assigned
to components of type ¢ in the jth component reliability vector for j = 1,...,w. Let &=

{1,...,r} and
H*={ic H: pt.#ql.j for at least one j; j= L,...,w},

so that | #*| component reliability types vary in 2.

Algorithm A-R describes the steps for computing the estimates and provides the
basis for measuring efficiency. In addition to computing {§0 ep). g, {ap); g€}, it
computes {V{bo K(q,p)], V[b1 A;(q,p)]; g€3} as unbiased estimators of {var bo K(q,p),
var bl K(q,p); g€2}. Observe that preprocessing in step 1 takes O(| ¥ *|w) time,
postprocessing in step 3 takes O(w) time and, on each replication, sampling in step 2a takes
O(] &|) time using Procedure Q in Fishman (1986), summation in step 2c takes

O E% k) < O(| &]) time and step 2d takes O(| #*| w) time. One can also show that the
N *

1€

mean total time for K replications using Algorithm A-R has the form
T({Z]OA,(q,p),blK(q,p)}) =uwy+w | F* v+ wws Ko, + w,| 8] + oy(F,.0)/A(p)

+w | F*|w+rw, Tk
5 6:'6:?6’*']

time where W+ Wg denote machine dependent constants. To reduce numerical error, all

computation in step 3 should be performed in extended precision arithmetic.
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Algorithm A-R
Purpose: To estimate the reliability function {g(¢), ¢ €Z}.
Input: Network G = (¥, &); number of type of components r ; k‘. = number of components of

type i for i=1,...,r ; sampling distribution {Q(z,p), £ €.3}; H* = set of component types
that vary in Z; lower and upper bounds {gL(q), y[j(q); € 2U {p}};

and number of independent replications K.

Output: {9, e, 9, Lap) Vg, Lep)) W9, Lep)i ¢€F as unbiased estimates of

{9(9), 9(9), var g, (a.p), var g, (ap); ¢1€F.
Method:

1. Initialization
a. A~ g,(p) - 9,(p)
b. For each ¢€.2:
K(0,9) = K(1,9) < 0.
For each i € &*:
a () + log[g(1-p)/p (1-¢)] and B(g) « log(1-¢)/(1-p)].
2. On each of K independent trials:
a. Sample Xijj = 1,...,k'. t=1,.,r from {Xz,p)}.
b.  Determine ¢(X).

k.
¢. Foreachi€H* X - T'X
j=1
d. Sample Z from %(0,1).

e. For ¢€2:
Ng) + 0.
For each i EH*: T(g) - T(g) + k'.ﬂi(q) + Xz,a,,(q).
R(X,q,p) - exp[T(g)]-
A(X,6(X),4.p) - R(X,qp)/ R 4 x)(eP)-
¢ 40 X240 - L2 + F(X,¢(X),0.)].
K(¢(X).q) « K(6(X),0) + ¢¢(X)(X,Z,¢,P)-

3. Computation of summary statistics

For each ¢€ 2:

-

99892 = 9,(0) - A(PR(4,P)K(0,9)/K.
9, ,(8P) = 9,(9 + A(P)R,(a,p) K(1.9)/ K.
VI3, 2] = [A() R (4] [K(O,0)/ KI[1- K(0,9)/ KI/(K-1).

Vi3, lap)] = (AR, (4] (K(10)/ KI[1- K(1,9)/ KI/(K-1).

—
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Let us now compare this approach to estimating {¢(g), ¢€4} with the alternative
approach based on the w point estimates {g Ko ,)(q), g €4} using (4), where one chooses the

sample sizes { H(¢,p), ¢ € 2} to achieve equal variances under the two methods. That is,

var g, (9 = %9(1-9(9)/ H(g.p) (29)

where

H(qp) = K A(¢,p)
and

9(9[1-9(9)]

MeP) = s —var 5 (X Z,¢p)
j€{0,1} !

Observe that
A(p.p) = 9(p)[1-9(p))/[9,(P)-oP)](9(P)-9,(P)]
and, except in special cases, for any edge typg 1EH*

lim Mgp) =0 for ¢# p.
k‘.-*oo

Let

A(p)= £ Mgp). (30)
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and observe that
lim A(p) = A(p,p)-
k -0
3
Therefore, the time ratio
TG (DD

A(2.p) =—— -
: T({ 95, 9:9): 9, {:P)})

where

TGy (0D = 2, T p(0)

(32)

measures the efficiency of the proposed method relative to using crude Monte Carlo

sampling with (4) w times to obtain estimates with equal variances var EH(”)(q) =

mir{1 }var b}. @p) foreach g€ 2. As k, increases, (32) assumes the form
7€{0,1

L [ayra,(%q) [k ]AM(g,p)

A(2.p) =152
W, + 0 1,p)/A k,+u6

aytag(Fp)/k,
e, (E P AE, (PP

where the lower bound is analogous to (10). This implies that one should expect efficiency

to exceed that which obtains from estimating g¢(p) only. As the example in Section 9

shows, the realized efficiency can be considerably greater.
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6. Improving Computational Efliciency
The special, but common, case 2 = {q1<...<qw} provides an opportunity for
improving the computational efficiency of Algorithm A-R. Write F(zi,q) for F(zi,q,p)

defined in (16) and note that for fixed zand :

0< F(z,i,qw) < F(z,i,qw_l)<...<F(z,i,ql) <1

so that {F(z,i,qw_ﬁl), Jj=1,..,w F(z,z',qo) z 1} is a distribution function (d.f.). Suppose
that one draws X from {@(z,p)} in (6) and Z from #%(0,1), and let

W=min(z: F(X,¢(X).q,_,,) 2 2 (34)

Then ga¢(x)(X,Z,qJ,p) =1 for W< wand =0 otherwise for j=1,..,W.

Note that every component state with T, edges of type i for i =1,...,r has either
{F(z,O,qw_ﬁl); Jj=1,..,uw} or {F(z,l,qw_#l); Jj=1,...,w} asits d.f. and there are m =
211 ,_(k'.+l) of these d.fs. If m is sufficiently small, as it will be if there are a small

1€ ¥
number of component types, then before sampling begins one can compute these d.fs. and
use them to create tables needed for the cutpoint sampling method (Fishman and Moore
1984). On each trial, one samples W from these specially prepared tables in O(1) time
regardless of how large w is. Algorithm A-R’ shows how to incorporate this alternative

*
sampling method. It replaces step 2e of Algorithm A-R, which takes O(K| ¥ |w) time

with a new step 2e that takes O(K) time, thus reducing computing time per replication.




Purpose:
Input:

Output:

Method:
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*
Algorithm A-R

To estimate the reliability function {g(q), ¢ € Z} where 2= {q1<...< qw}.

Network G = (¥,&) ; number of type of components r ; k'. = number of components of
type i for i=1,...,r ; sampling distribution {Q(z,p), z €F}; H * = set of component types
that vary in 2 ; lower and upper bounds {gL(q), gU(q); ¢ €2U{p}}; and number of

independent replications K.

{39{ep, 9, Lap), Vg Lep). V19, {ep); 4€Z as unbiased estimates of

{9(9), 9(9), var g, (a.p), var g, (a.P); 4€F.

1. Initialization

a.

b.

A(p) = g;(p) — 9,(p).
For i=1,...,w: 7(0,8) = 7(1,i) « 0.

2. On each of K independent trials:

a.

c.
d.

€.

Sample X'.].j=1,...,ki i=1,...,r from {Q(z,p)}.

Determine ¢(X).

Sample Z from #%/(0,1).

W e min[z: F(X,¢(X), qw—z+1) 2 7). (Fishman and Moore 1984).
T(6(X), W) = T($(X), W) + 1.

3. Computation of summary statistics

K(O,qw) « 7(0,w) and K(l,qw) = 7(1,w).
For i=0,1:

For F2,...,w: R(l’qw-#l) - Is(z,qw_].) + (i, w-+1).
For 5=1,...,w:

994(9;2) + 9,{9) - BPR(4,PK(0,9)/K.
91 {99 9(a) + AAR (¢, KL, 0)/K.
Vi3 (0,2 [A(BR(0.) K(0,0)/ K1~ K(O,0)/ KI/(K-D).

V3, (9,9 - (AR, (4,2) [K(L )/ KL K(L,g)/ KI/(K-1).
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7. Individual Confidence Intervals

Since

llmp [lyK(q, g(q* ]:2@(&)-1
[var g, {q,p)]

where ®(e) denotes the d.f. of the standard normal distribution, one can immediately
compute an approzimating confidence interval for g(g). In particular, based on g = -;’0 P q.p)

and Theorem 1, one has the approximating 100x(1 - §) percent confidence interval

9+120,(9-A(P) R ) [2K=B{A(p) R 5 K+[g (9~ SI[A(P) Ry-g { )+ 3]/ K}
1+ ﬂQ/K '

for ¢(¢q) where

An analogous interval can be computed based on bl {9P)

Because of the nonuniform convergence to normality, this approach inevitably
incurs an error of approximation. An alternative approach avoids this error, albeit at the
cost of a wider interval.

Theorem 5. Let

m(z,w) = zlog(w/z) + (1-2) log[(1-w)/(1-2)] 0<z w<l,

let w(2,6/2,K) denote the solution to m(zw) = -}\, log(68/2) for fixed z€(0,1] and 6 €(0,1),

——
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and let
w (2,8/2,K) = «(2,6/2,K) if0<z<1
=0 otherwise.
Then, the interval
i (9,(9-A(p)Rw (1-K(0,9)/ K,6/2,K), 9,(0)-A(p) Ryw (K(0,0)/ K.5/2,K))
covers g(q) with probability > 1 —§
and
i (g,(0+A(D)Rw (K(L,Q/K.6/2.K), g,(9+A(P)R,w (1-K(1,9)/ K,6/2,K))
covers ¢g(g) with probability > 1 — 4.
The proof exploits the observation that
prig {@-AP) R < p(X.Z,0p) < 9,(@)] =1

and

prlg, (@) < 1 (X.Z,qp) < 9,(q) + A(P)R,] = 1.

The resulting confidence intervals follow from Theorem 1 in Fishman (1988). g

(35)

(36a)

(36b)
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Since the slowest convergence to normality for f;i X( ¢,p) occurs for g¢g(q) close to
zero and unity and since one is often interested in ¢(g) near unity the wider confidence
intervals that result from this approach seem a reasonable price to pay to be free of the
error of approximation inherent in normal intervals. Since {m(z,w)} is concave in w, one

can compute the required roots by bisection.

8. Simultaneous Confidence Intervals

Although each confidence interval in Section 7 holds with probability > 1-6, the
joint confidence intervals for {g(q), ¢€4} hold simultaneously only with probability >
1 - wé. This result follows from a Bonferroni inequality. See Miller (1981, p. 8). To
restore the joint confidence level to 1-4, one replaces §/2 by §/2w in (36a) and (36b) and
determines the corresponding solutions. The effect of this substitution is to increase the
constant of proportionality in the approximate interval widths from [2log(2/6)]% to
[2log(2w/ 5))* (see Fishman 1988). For § = .01 and w = 20 one has [log(2w/#)/log(2/6)]} =
1.25. For 6 = .01 and w = 100, it is 1.37 and for 6 = .01 and w = 1000 it is 1.52. However,

if 2 denotes a continuous region in the | &|-dimensional hypercube (0,1)I 8|

, then the
resulting confidence intervals have infinite widths and are therefore useless.

For the case @ = {q1<...<qw}, an alternative approach derives simultaneous
confidence intervals for {¢(q), ¢€4} by exploiting the fact that {K(O,qj)/l{; Jj=1,.,uw}
and {I\’(l,q].)/K; Jj = 1,..,w}, in steps 3 of Algorithms A-R and A—R*, satisfy the

definition of an empirical distribution function. Since

K “'EK(0,q) = p(0,9) = (9,(0)-9(0)]/ A(P)R,

and
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K 'EK(1,9) = p(1,0) = [9(0)-9,(9)/ A(DR, ,
pr(N [1K(0,6)/ K~ p(0,0)] < dy(O]} 2 1-8
=1

and

pr{ 0 (| K(L,g)/K ~ plL.g)| < dy(B]} 21-5
=1

where d K( 6) denotes the critical value of the Kolmogorov-Smirnov distribution for sample

size K at significance level . Therefore,

9,(9) — A(P)R(4,9)[KO,q)/ Kxd (8] V¥ j=1,..w (37a)
cover 9(q1)""’g(qw) simultaneously with probability > 1 - ¢ and similarly

9,(¢) + AP R |(¢,p)[K(1,q)/ Kzd (8] ¥ j=1,..0 (37b)

cover g(ql),...,g(qw) with probability > 1 - 6. For 6= .05, 1lim IﬁdK(.OS) = 1.3581 and for
K-

for 6§ = .01 lim K%dK(.Ol) = 1.6276. Since dm('05)/dl{('05) < 1.013 for K > 100 and

K0
dm(.Ol)/dK(.Ol) < 1.014 for K > 80 (Birnbaum 1952), little error arises when replacing

d,(.05) by 1.3581/K* and d,(.01) by 1.6276/K* above for K > 100. The appeal of this
alternative approach is that the widths of the intervals are all independent of w. The
limitation is that all intervals are of the same width. In practice, one can compute the
intervals based on (36a) and (36b) with &/2w replacing §/2 and the intervals based on
(37a) and (37b), and choose the set with smaller widths.
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9. Example
An analysis of the network in Fig. 1 illustrates the proposed method. The network
has 30 edges and 20 nodes. The example assumes r=1 so that all edges have identical

reliabilities, allowing us to write ¢ = ¢. Note that any other specification with » > 1 can

Insert Fig. 1 about here.

be accommodated easily.  The objective is to estimate {g¢(g), ¢= .80 +.01(i-1)
i=1,...,20} where g(q) = probability that nodes s = 1 and ¢ = 20 are connected when edge
reliabilities are ¢. For sampling, we use p = p, again merely as a convenience. The lower
and upper bounding functions {g,(¢)} and {g,(g)} were computed beforehand using
edge-disjoint minimal s-t cutsets for {gL(q)} and edge-disjoint minimal s-t cutsets for
{9,{@)}, asin Fishman (1986). To determine these paths takes O(I|&|) time, where I
denotes the size of the smallest minimal s-t cutset and to determine the paths takes
O(]| &) time. The determination of R, and R, is discussed in Fishman (1988). The
evaluation of #(X) using a depth-first search as in Aho, Hopcroft and Ullman (1974)
takes O(max(|&|,|#])) time.

An experiment was run with p = .80, which minimized the worst case variances as
in (24), and with sample size K = 22 = 1048576. Since results for {ZJO K(q,p)} were
considerably more favorable than those for {?)1 K( ¢,p)}, the analysis focuses on {50 i ap)}.
Table 1 shows individual point estimates and confidence intervals, the latter having been
computed as in (36a). Table 2 compares the precomputed worst case and the empirically
observed coefficients of variation and variances, and Table 3 shows the worst case and
empirically observed variance ratios, where the variance in the numerator corresponds to
that for crude Monte Carlo sampling.

Recall that the worst case results can be computed and used prior to sampling. For
example, suppose that one wants a coefficient of variation no larger than u, = .01 for all

point estimates. Since the largest worst case results in Table 2 is 10.13, one would use (25)

———
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to compute the worst case sample size n«x = 1,008,016.

Insert Tables 1,2, and 3 about here.

In contrast to the exact results in col. 3 of Table 1 which took slightly more than
one hour each to compute, all results in cols. 4 through 8 took 74.9 minutes to compute in
total, or 4.28 milliseconds per replication. Whereas the calculated exact results in col. 3
are accurate to sixteen significant digits (reduced to four digits here for comparative
purposes), the confidence intervals suggest an accuracy to two significant digits at the .99
level. If two significant digits is acceptable for purposes of analysis, then the Monte Carlo
approach clearly prevails.

An experiment with K = 1048576 was also run using Algorithm A-R. It, of course,
gave statistical results close to those that Algorithm A-R produced. However, it took 36.6
minutes or 2.09 milliseconds per replication revealing a substantial increase in computing

efficiency.

10. A Comparison
At least one alternative method exists for using the data from a single experiment
with input vector p to generate estimates of {¢(¢), ¢€4}. This method is based on using

the importance function (13) to form

¥ (5¢p) = 9,(9 + A(P)¢(2) R(z,¢.p)

and

¥ (%9p) = 9,9 + A(p)[1-¢(2)] R(z,¢p)
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so that ¢’a(X,q,p) and wb(X,q,p) both have expectation g(g) when X isfrom {Q(zp)}.
Fishman (1987) studies these estimates in detail using the same network, and a comparison
between these importance function (IF) and the currently proposed acceptance-rejection
(A-R) estimators seems appropriate.

For every q€.2, the IF estimators have smaller variance than the A-R estimators
do and both methods have about the same computation time per replication. If variance is
the dominant consideration, then the IF method prevails. However, there are other issues
that also deserve consideration. The A-R estimators have considerably simpler expressions
for variance and coefficient of variation than the IF estimators do. Also, on each trial
uO(X,Z,q,p) and ul(X,Z,q,p) for the A-R approach each assume binary values thus

allowing standard techniques of analysis for binary data to apply. In contrast wa(X, q.p)

and wb(X,q,p) in the IF approach each assume O(iljl(k..+1) values precluding the use of
the simpler analysis.

With regard to confidence intervals, the A-R- approach allows one to compute
individual asymptotically normal intervals without nuisance parameters whereas the IF
estimators do not. For .ndividual confidence intervals based on Theorem 5, both methods
give intervals of about the same length. This is a consequence of ignoring estimated

variance information for the IF method. For simultaneous confidence intervals the A-R

method allows the development in Section 8 when pr-rq, whereas the IF method does

not.
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Table 2

Coefficients of Variation and Variances

(p = .80)
[var u(XZ.q.0)]t
1(aP) = T~ E5, (X200 var p,(X,Z,4,p)

q Worst Case]L Observed7LJr Worst CaseTH ObservedhL
.80 2.06 2.02 .207D-01 .539D-02
.81 2.37 2.35 .262D-01 .491D-02
.82 2.72 2.72 .322D-01 .432D-02
.83 3.11 3.11 .383D-01 .368D-02
.84 3.53 3.53 .435D-01 .303D-02
85 4.00 3.93 455D-01 239D-02
.86 4.51 4.46 443D-01 .181D-02
87 5.06 4.95 .406D-01 .128D-02
.88 5.64 5.44 .349D-01 .876D-03
.89 6.26 5.93 .282D-01 .567D-03
.90 6.91 6.37 .212D-01 .335D-03
91 7.57 6.74 .147D-01 .182D-03
.92 8.23 7.08 .928D-02 .918D-04
.93 8.87 7.37 .520D-02 .423D-04
94 9.44 7.41 .250D-02 .156D-04
.95 9.89 7.29 .982D-03 .473D-05
.96 10.13 6.76 .287D-03 .983D-06
97 10.04 5.95 .527D-04 .127D-06
.98 9.37 4.59 .415D-05 .617D-08
.99 7.5 2.69 .396D-07 .308D-10

t Computed from (21). tf Estimated from data. t Computed from (20).




Table 3

Variance Ratios

var g,{q)
var g, (4,p)

q
.80

81
.82
.83
84
.85
.86
87
.88
.89
.90
91
.92
.93
.94
.95
.96
97
.98
99

Worst Caset
5.15
4.32
3.711
3.27
2.95
2.75
2.60
2.54
2.56
2.68
2.91
3.31
3.97
5.10
7.14

11.23
20.88
50.53
197.50
2490.13

Observedﬁ
6.48
5.88
5.47
5.20
5.06
5.07
5.21
5.61
6.18
7.06
8.55

10.95
14.73
20.81
34.12
63.00
149.23
471.61
2771.75
67040.00

f Computed from (27). t1 Estimated from data.
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